得鹿梦鱼 得鹿梦鱼

矩阵及其计算

矩阵

m×nm \times n个数aija_{ij}排列成的m行n列的数表
[a11b21...an1a12b22...an2............am1bm2...amn]\left [\begin {matrix}a_{11} & b_{21} & ... & a_{n1} \\a_{12} & b_{22} & ... & a_{n2} \\... & ... & ... & ... \\a_{m1} & b_{m2} & ... & a_{mn}\end {matrix}\right ]
称为m行n列的矩阵,简称m×nm \times n矩阵
行数和列数都等于n的矩阵被称为n阶矩阵n阶方阵
只有1行的矩阵被称为行矩阵或者行向量
只有1列的矩阵被称为列矩阵或者列向量
两个矩阵的行数和列数相等时称两个矩阵为同型矩阵
如果两个矩阵式同型矩阵且对应元素也相对则称为矩阵相等
元素都是零的矩阵被称为零矩阵
对于一个n阶方阵,除了对角线的元素为1,其他位置的元素为0的矩阵称为单位矩阵
不在对角线上的元素都是0的方阵被称为对角矩阵记作diagλ1,λ2,...,λndiag\lambda_1,\lambda_2, ..., \lambda_n

矩阵的计算

矩阵的加法

设存在2个m×nm \times n矩阵 AB,那么矩阵AB的和记作A+B\bold A + \bold B

[a11+b11a12+b12...a1n+b1na21+b21a22+b22...a2n+b2n............am1+bm1am2+bm2...amn+bmn]\left [\begin{matrix}a_{11} + b_{11} & a_{12} + b_{12} & ... & a_{1n} + b_{1n} \\a_{21} + b_{21} & a_{22} + b_{22} & ... & a_{2n} + b_{2n} \\... & ... & ... & ... \\a_{m1} + b_{m1} & a_{m2} + b_{m2} & ... & a_{mn} + b_{mn}\end{matrix}\right ]

当2个矩阵为同型矩阵时,才可以进行加法运算

A+B=B+AA+A=0\bold A + \bold B = \bold B + \bold A\\\bold A + -\bold A = \bold 0

数与矩阵的乘法

λ\lambda与矩阵A的乘积记作λA\lambda \bold A

[λa11λa12...λa1nλa21λa22...λa2n............λam1λam2...λamn]\left [\begin{matrix}\lambda a_{11} & \lambda a_{12} & ... & \lambda a_{1n} \\\lambda a_{21} & \lambda a_{22}& ... & \lambda a_{2n} \\... & ... & ... & ... \\\lambda a_{m1}& \lambda a_{m2}& ... & \lambda a_{mn}\end{matrix}\right ]

λμA=λμAλμA=λA+μAλA+B=λA+λB\lambda \mu \bold A = \lambda \mu \bold A \\\lambda \mu \bold A = \lambda \bold A + \mu \bold A \\\lambda \bold A + \bold B = \lambda \bold A + \lambda \bold B

矩阵的加法和乘法统称为矩阵的线性运算

矩阵与矩阵相乘

设有两个线性变换
{a11x1+a12x2+a13x3=y1a21x1+a22x2+a23x3=y2\begin{cases}a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = y_1 \\a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = y_2 \\\end{cases}

{b11t1+b12t2=x1b21t1+b22t2=x2b31t1+b32t2=x3\begin{cases}b_{11}t_1 + b_{12}t_2 = x_1 \\b_{21}t_1 + b_{22}t_2 = x_2 \\b_{31}t_1 + b_{32}t_2 = x_3\end{cases}
则y关于t的线性变换为

{a11b11+a12b21+a13b31t1+a11b12+a12b22+a13b32t2=y1a21b11+a22b21+a23b31t1+a21b12+a22b22+a23b32t2=y2\begin{cases}a_{11}b_{11} + a_{12}b_{21} +a_{13}b_{31}t_1 + a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}t_2 = y_1 \\a_{21}b_{11} + a_{22}b_{21} +a_{23}b_{31}t_1 + a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}t_2 = y_2\end{cases}

[a11a12a13a21a22a23][b11b12b21b22b31b32]=[a11b11+a12b21+a13b31a11b12+a12b22+a13b32a21b11+a22b21+a23b31a21b12+a22b22+a23b32]\left [\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\end{matrix}\right ]\left [\begin{matrix}b_{11} & b_{12} \\b_{21} & b_{22} \\b_{31} & b_{32}\end{matrix}\right ]\text{=}\left [\begin{matrix}a_{11}b_{11} + a_{12}b_{21} +a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\a_{21}b_{11} + a_{22}b_{21} +a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32}\end{matrix}\right ]

只有当第一个矩阵左矩阵的列数等于第二个矩阵右矩阵的行数时,2个矩阵才可以相乘

一般情况下ABBA\bold A \bold B \neq \bold B \bold A
如果AB=BA\bold A \bold B = \bold B \bold A,则称矩阵AB是可以交换的

ABC=ABC\bold A \bold B \bold C = \bold A \bold B \bold C
λAB=λAB=AλB\lambda \bold A \bold B = \lambda \bold A \bold B = \bold A \lambda \bold B
AB+C=AB+AC\bold A \bold B + \bold C = \bold A \bold B + \bold A \bold C

矩阵的转置

把矩阵A的行换成同系数的列得到的一个新矩阵,叫A的转置矩阵记做AT{\bold A}^T
ATT=A{\bold A}^T^T = \bold A
A+BT=AT+BT\bold A + \bold B^T = {\bold A}^T + {\bold B}^T
λAT=λAT\lambda \bold A ^T = \lambda \bold A ^T
ABT=BTAT{\bold A\bold B}^T = {\bold B}^T {\bold A}^T

对称矩阵

满足AT=A{\bold A}^T = \bold A, 则称矩阵为对称矩阵,特点是:元素以对角线为对称轴对应相等

方阵的行列式

有n阶方阵A的元素所构成的行列式,称为方阵的行列式
应当注意:n阶方阵是由n2n^2个数按照一定规则排成的数表,而n阶行列式是这些数表按照一定的运算规则所计算而确定的一个数

AT=A\bold A^T = \bold A
λ=λnA\lambda \bold = \lambda^n \bold A
AB=AB\bold A \bold B = \bold A \bold B

伴随矩阵

方阵的行列式的各个元素的代数余子式Aij\bold A_{ij}所构成的矩阵被称为伴随矩阵,记作A\bold A^*

[A11A22...An1A12A22...An2............A1nA2n...Ann]\left [\begin {matrix}\bold A_{11} & \bold A_{22} & ... & \bold A_{n1} \\\bold A_{12} & \bold A_{22} & ... & \bold A_{n2} \\... & ... & ... & ... \\\bold A_{1n} & \bold A_{2n} & ... & \bold A_{nn}\end {matrix}\right ]

AA=AA=AE\bold A^* \bold A = \bold A^* \bold A =\bold A \bold E