得鹿梦鱼 得鹿梦鱼

函数的微分

设函数y=fxy = fx在某区间内有定义,x0x_0以及x0+Δxx_0 + \Delta x在这个区间内,如果函数的增量为Δy=f0+Δxfx0\Delta y = f_0 + \Delta x - fx_0则可表示为Δy=AΔx+oΔx\Delta y = A \Delta x + o\Delta x,其中A是不依赖与Δx\Delta x的常数,那么称函数y=fxy = fx在点x0x_0处是可微的,而AΔxA \Delta x叫做函数y=fxy = fx在点x0x_0相应与自变量增量Δx\Delta x的微分,记作dydydy=AΔxdy = A \Delta x

如果函数fxfx在点x0x_0可微,那么fxfx在点x0x_0处也一定可导, 且微分一定是dy=fx0Δxdy = f'x_0\Delta x

Δy=dy+ody\Delta y = dy + ody, dydyΔy\Delta y的主部, dydyΔx\Delta x的线性函数,所有在fx00f'x_0 \neq 0的条件下,说dydyΔy\Delta y的主部

函数y=fxy = fx在任意点x的微分,称为函数的微分,记作dydy或者dfxdfxdy=fxΔxdy = f'x \Delta x

通常把自变量x的增量Δx\Delta x叫做自变量的微分,记作dxdx换句话说就是,函数的微分Δy\Delta y与自变量的微分Δx\Delta x之商等于该函数的导数,因此导数也叫做微商

基本初等函数的微分公式

导数公式微分公式
xu=uxu1x^u' = ux^{u-1}dxu=uxu1dxdx^u = ux^{u-1}dx
sinx=cosxsinx' = cos xdsinx=cosxdxdsinx = cosxdx
cosx=sinxcosx' = -sinxdcos=sinxdxdcos = -sinxdx
tanx=sec2xtanx' = sec^2xdtanx=sec2xdxdtanx = sec^2xdx
cotx=csc2xcotx' = -csc^2xdcot=csc2xdxdcot = -csc^2xdx
secx=secxtanxsecx' = secxtanxdsecx=secxtanxdxdsecx = secxtanx dx
cscx=cscxcotxcscx' = -cscxcotxdcscx=cscxcotxdxdcscx =-cscxcotxdx
ax=axlnaa^x' = a^xlnadax=axlnadxda^x = a^xlnadx
ex=exe^x' = e^xdex=exdxde^x = e^xdx
logax=1xlnalog_a x' = \frac{1}{xlna}dlogax=1xlnadxdlog_a x = \frac{1}{xlna}dx
lnx=1xlnx' =\frac{1}{x}dlnx=1xdxdlnx = \frac{1}{x}dx
arcsinx=11x2arcsinx' =\frac{1}{\sqrt{1 -x^2}}darcsinx=11x2dxdarcsinx = \frac{1}{\sqrt{1 -x^2}}dx
arccosx=11x2arccosx' =-\frac{1}{\sqrt{1 -x^2}}darccosx=11x2dxdarccosx = -\frac{1}{\sqrt{1 -x^2}}dx
arctanx=11+x2arctanx' =\frac{1}{1 + x^2}darctanx=11+x2dxdarctanx = \frac{1}{1 + x^2}dx
arccotx=11+x2arccotx' =-\frac{1}{1 + x^2}darccotx=11+x2dxdarccotx = -\frac{1}{1 + x^2}dx

微分的运算法则

求导法则微分法则
u±v=u±vu \pm v' = u' \pm v'du±v=du±dvdu \pm v = du \pm dv
Cu=CuCu' = Cu'dCu=CdudCu = Cdu
uv=uv+uvuv' = u'v + uv'duv=vdu+udvduv = vdu + udv
uv=uvuvv2\frac{u}{v}' = \frac{u'v - uv'}{v^2}duv=vduudvv2d\frac{u}{v} = \frac{vdu - udv}{v^2}